
NASA Technical Memorandum 110274

A Bitvectors Library For PVS

Ricky W. Butler

Paul S. Miner

Langley Research Center, Hampton, Virginia

Mandayam K. Srivas

SRI International, Menlo Park, California

Dave A. Greve

Steven P. Miller

Rockwell Collins, Cedar Rapids, Iowa

August 1996

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

Abstract

This paper describes a bitvectors library that has been developed for PVS. The

library de�nes a bitvector as a function from a subrange of the integers into f0,1g.

The library provides functions that interpret a bitvector as a natural number, as a 2's

complement number, as a vector of logical values and as a 2's complement fraction.

The library provides a concatenation operator and an extractor. Shift, extend and

rotate operations are also de�ned. Fundamental properties of each of these operations

have been proved in PVS.

Contents

1 Introduction 3

2 Fundamental De�nition of a Bitvector 3

3 Natural Number Interpretations of a Bitvector 4

4 Bitwise Logical Operations on Bitvectors 5

5 Bitvector Concatenation 6

6 Extraction Operator 7

7 Shift Operations on Bitvectors 8

8 Bitvector Rotation 8

9 Zero and Sign-Extend Operators 9

10 Theorems Involving Concatenation and Extraction 10

11 2's Complement Interpretations of a Bitvector 11

12 Bitvector Arithmetic 12

12.1 De�nition of Arithmetic Operators : 12

12.2 Arithmetic Properties of Shifting : 13

12.3 Theorems about 2's Complement Arithmetic : : : : : : : : : : : : : : : : : : 14

13 Overow 15

14 Library Organization 15

2

1 Introduction

The method used for specifying the parallel data lines of a hardware device is fundamental to

any hardware veri�cation. These lines consist of an ordered set of 0's and 1's, usually called

bits. The ordered set of bits is referred to as a bitvector. Although a human reader of a

circuit design automatically \interprets" these bitvectors as natural numbers, 2's complement

integers, characters, or some other encoded object, a formal model must explicitly account

for these interpretations. For example, if bv is a bitvector, a function, say bv2nat, must be

applied to bv in order to convert it to a natural number, i.e. bv2nat(bv).

The bitvectors library has been developed for PVS [1, 2, 3, 4, 5, 6] with several goals in

mind:

� All of the common functions that interpret and operate on bitvectors should be de�ned

in a manner that is simple and reusable.

� The library should not introduce new axioms. In this way the library will be consistent

if PVS is consistent.

� The library should provide a complete set of operators on bit-vectors that hide the

particular bitvector implementation used. Thus, if the de�nition of the bitvector type

were change from its current functional form to another form (e.g., a list form), the

interface to the user would remain the same.

� The library should be organized in a manner that supports a variety of hardware,

without imposing a heavy overhead. In other words, speci�c parts of the library should

be accessible without being exposed to extraneous de�nitions.

� The library should facilitate the connection to di�erent hardware design tools.

Similar libraries have been constructed for many other systems including the Boyer-Moore

theorem prover [7] and the Cambridge Higher Order Logic (HOL) system [8].

The bitvectors library is available via the World Wide Web at

http://atb-www.larc.nasa.gov/ftp/larc/PVS-library/

in the �le bitvectors.dmp.

2 Fundamental De�nition of a Bitvector

There are several methods one could use to de�ne a bitvector in PVS. Three reasonable

candidates are:

� a list of bits

� a �nite sequence of bits

� a function from f0,1,2, ..,N-1g into f0,1g.

3

The third method has been used in this library. A bit is de�ned as:

bit : TYPE = fn: nat | n <= 1g

and a bit-vector is de�ned as

bvec : TYPE = [below(N) -> bit]

Thus the type bvec is a function from below(N) to bit. The domain of the function is

speci�ed using the type below which is prede�ned in the PVS prelude as:

below(i): TYPE = fs: nat | s < ig

The symbol N is a constant natural number representing the length of the bitvector. It is

imported into the basic theory using PVS's theory parameterization capability:

bv[N: nat]: THEORY

BEGIN

bit : TYPE = fn: nat | n <= 1g

bvec : TYPE = [below(N) -> bit]

END bv

This de�nition allows the use of empty bitvectors, which is primarily useful when using the

concatenation operators de�ned in a subsequent section.

A bitvector of length N is de�ned as follows:

bv: VAR bvec[N]

and the ith bit can be retrieved in two ways: bv(i) or bv^i. The latter method has the

advantage that it is implementation independent. The ^ operator is de�ned as follows:

^(bv: bvec, (i: below(N))): bit = bv(i)

3 Natural Number Interpretations of a Bitvector

A bitvector is interpreted as a natural number through use of a function named bv2nat.

This function is de�ned as follows:

bv_nat[N: nat]: THEORY

BEGIN

IMPORTING bv[N], exp2

4

bv2nat_rec(n: upto(N), bv:bvec): RECURSIVE nat =

IF n = 0 THEN 0

ELSE exp2(n-1) * bv^(n-1) + bv2nat_rec(n - 1, bv)

ENDIF

MEASURE n

bv2nat(bv:bvec): below(exp2(N)) = bv2nat_rec(N, bv)

where exp2 is the power of 2 function de�ned in the exp2 theory:

exp2(n: nat): RECURSIVE posnat = IF n = 0 THEN 1 ELSE 2 * exp2(n - 1) ENDIF

MEASURE n

The bv2nat function returns a natural number that is less than 2N. Note that this fact is

contained in the type of the function1. The bv2nat function is de�ned in terms of a recursive

function bv2nat rec. The function bv2nat rec is equivalent to

bv2nat rec(n; bv) =
n�1X

i=0

2ibv^i

Note that this de�nition designates that the 0th bit is the least signi�cant bit and the N-1

bit is the most signi�cant bit.

The bv2nat function is bijective (i.e. is a one-to-one correspondence):

bv2nat_bij : THEOREM bijective?(bv2nat)

and thus an inverse function nat2bv exists:

nat2bv(val:below(exp2(N))): bvec = inverse(bv2nat)(val)

Thus, the following relationship exists between these functions:

bv2nat_inv : THEOREM bv2nat(nat2bv(val)) = val

4 Bitwise Logical Operations on Bitvectors

The bitwise logical operations on bitvectors are de�ned in the bv_bitwise theory as follows:

1The PVS system provides a powerful type theory that is heavily exploited in this library. We have

deliberately packed as much information as possible into the types of the functions. This provides two major

bene�ts: (1) The information is automatically available in proofs, and (2) many theorems can be stated

concisely, without explicit contraints.

5

i: VAR below(N)

OR(bv1,bv2: bvec[N]) : bvec = (LAMBDA i: bv1(i) OR bv2(i));

AND(bv1,bv2: bvec[N]): bvec = (LAMBDA i: bv1(i) AND bv2(i)) ;

IFF(bv1,bv2: bvec[N]): bvec = (LAMBDA i: bv1(i) IFF bv2(i)) ;

NOT(bv: bvec[N]) : bvec = (LAMBDA i: NOT bv(i)) ;

XOR(bv1,bv2: bvec[N]): bvec = (LAMBDA i: XOR(bv1(i),bv2(i))) ;

If the user wishes to avoid the use of the underlying bitvector implementation, the following

lemmas can be used rather than expanding these functions:

bv, bv1, bv2: VAR bvec[N]

bv_OR : LEMMA (bv1 OR bv2)^i = (bv1^i OR bv2^i)

bv_AND : LEMMA (bv1 AND bv2)^i = (bv1^i AND bv2^i)

bv_IFF : LEMMA (bv1 IFF bv2)^i = (bv1^i IFF bv2^i)

bv_XOR : LEMMA XOR(bv1,bv2)^i = XOR(bv1^i,bv2^i)

bv_NOT : LEMMA (NOT bv)^i = NOT(bv^i)

5 Bitvector Concatenation

The concatenation operator o on bitvectors is de�ned in the bv_concat theory as follows:

bv_concat [n:nat, m:nat]: THEORY

BEGIN

o(bvn: bvec[n], bvm: bvec[m]): bvec[n+m] =

(LAMBDA (nm: below(n+m)): IF nm < m THEN bvm(nm)

ELSE bvn(nm - m)

ENDIF)

The result of concatenating a bitvector of length n with a bitvector of length m is a new

bitvector of length n+m. The zero-length bitvector is the identity. The following theorems,

which establish that the triple (bvec, o, null bv) is a monoid, are proved in the theory

bv_concat_lems.

6

null_bv: bvec[0] %% zero-length bit-vector

concat_identity_r : LEMMA (FORALL (n: nat), (bvn:bvec[n]):

bvn o null_bv = bvn)

concat_identity_l : LEMMA (FORALL (n: nat), (bvn:bvec[n]):

null_bv o bvn = bvn)

concat_associative : LEMMA (FORALL (m,n,p: nat), (bvm:bvec[m]),

(bvn:bvec[n]), (bvp:bvec[p]):

(bvm o bvn) o bvp = bvm o (bvn o bvp))

The bv_concat_lems theory also provides a lemma not_over_concat

not_over_concat : LEMMA (FORALL (n: nat), (a,b: bvec[n]):

(NOT (a o b)) = (NOT a) o (NOT b))

that shows that NOT distributes over the o operator and a lemma bvconcat2nat that provides

the result of applying bv2nat to a concatenated bitvector:

bvn: VAR bvec[n]

bvm: VAR bvec[m]

nm: VAR below(n+m)

bvconcat2nat: THEOREM bv2nat[n+m](bvn o bvm)

= bv2nat[n](bvn) * exp2(m) + bv2nat[m](bvm)

6 Extraction Operator

The operator ^(i,j) extracts a contiguous fragment of a bitvector between two given posi-

tions.

^(bv: bvec[N], sp:[i1: below(N), upto(i1)]): bvec[proj_1(sp)-proj_2(sp)+1] =

(LAMBDA (ii: below(proj_1(sp) - proj_2(sp) + 1)):

bv(ii + proj_2(sp))) ;

Although the de�nition looks formidable, the behavior is quite simple. The �rst argument is

a bitvector of length N. The second argument designates the sub�eld that is to be extracted.

For example, suppose bv = (t,u,v,w,x,y,z) with z as the least signi�cant bit. Then,

bv^(4,2) is the bitvector of length 3 that contains the bits 4, 3 and 2. In other words,

bv^(4,2) = (v,w,x).

7

7 Shift Operations on Bitvectors

The left and shift operations on a bitvector are de�ned as follows:

right_shift(i: nat, bv: bvec[N]): bvec[N] =

IF i = 0 THEN bv

ELSIF i < N THEN bvec0[i] o bv^(N-1, i)

ELSE bvec0[N] ENDIF

left_shift(i: nat, bv: bvec[N]): bvec[N] =

IF i = 0 THEN bv

ELSIF i < N THEN bv^(N-i-1, 0) o bvec0[i]

ELSE bvec0[N] ENDIF

The right shift operation shifts a bit vector by a given number of positions to the right,

�lling 0's in the shifted bits. The left shift operation shifts a bit vector by a given number

of positions to the left, �lling 0's in the shifted bits.

8 Bitvector Rotation

The rotation operations on a bitvector are de�ned in the bv_rotate theory as follows:

rotate_right(k: upto(N), bv: bvec[N]): bvec[N] =

IF (k = 0) OR (k = N) THEN bv

ELSE bv^(k-1,0) o bv^(N-1, k) ENDIF

rotate_left(k: upto(N), bv: bvec[N]): bvec[N] =

IF (k=0) OR (k = N) THEN bv

ELSE bv^(N-k-1, 0) o bv^(N-1,N-k) ENDIF

The following lemmas relate the �elds of the rotated bitvector with the original bitvector:

rotate_right_lem : LEMMA rotate_right(k,bv)^i =

IF i+k < N THEN bv^(i+k) ELSE bv^(i+k-N) ENDIF

rotate_left_lem : LEMMA rotate_left(k,bv)^i =

IF i-k >= 0 THEN bv^(i-k) ELSE bv^(N+i-k) ENDIF

The 1-bit rotation functions are de�ned in terms of these as follows:

rot_r1(bv: bvec[N]): bvec[N] = rotate_right(1,bv)

rot_l1(bv: bvec[N]): bvec[N] = rotate_left(1,bv)

The rotate right(1,bv) and rotate left(1,bv) functions can also be expressed in terms

of rot r1 and rot l1 as follows:

8

iterate_rot_r1 : LEMMA iterate(rot_r1,k)(bv) = rotate_right(k,bv)

iterate_rot_l1 : LEMMA iterate(rot_l1,k)(bv) = rotate_left(k,bv)

where iterate is de�ned in the PVS prelude as follows:

function_iterate[T: TYPE]: THEORY

BEGIN

f: VAR [T -> T]

m, n: VAR nat

x: VAR T

iterate(f, n)(x): RECURSIVE T =

IF n = 0 THEN x ELSE iterate(f, n-1)(f(x)) ENDIF

MEASURE n

END function_iterate

9 Zero and Sign-Extend Operators

The zero extend operator expands a bit-vector of length N into a bitvector of length k �lling

the upper bits with zeros:

zero_extend(k: above(N)): [bvec[N] -> bvec[k]] =

(LAMBDA bv: bvec0[k-N] o bv)

Thus, the natural number interpretation remains the same:

zero_extend_lem : THEOREM bv2nat[k](zero_extend(k)(bv)) = bv2nat(bv)

The sign_extend operator returns a function that extends a bit vector to length k by

repeating the most signi�cant bit of the given bit vector:

sign_extend(k: above(N)): [bvec[N] -> bvec[k]] =

(LAMBDA bv: IF bv(N-1) = 1 THEN bvec1[k-N] o bv

ELSE bvec0[k-N] o bv ENDIF)

The 2's complement interpretation remains the same:

sign_extend_lem : THEOREM bv2int[k](sign_extend(k)(bv)) = bv2int(bv)

These higher-order functions are de�ned in the theory bv_extend.

The following useful theorem has been proved about the sign extend function:

9

sign_to_zero : THEOREM sign_extend(k)(bv) =

IF bv(N-1) = 1 THEN NOT(zero_extend(k)(NOT(bv)))

ELSE zero_extend(k)(bv)

ENDIF

A function zero extend lsend is also de�ned to return a function that extends a bit

vector to length k by padding 0's at the least signi�cant end of bvec. That is, the bv2nat

interpretation of the argument increases by 2(k-N):

zero_extend_lsend(k: above(N)): [bvec[N] -> bvec[k]] =

(LAMBDA bv: bv o bvec0[k-N])

zero_extend_lsend: THEOREM bv2nat(zero_extend_lsend(k)(bv))

= bv2nat(bv) * exp2(k-N)

A higher-order function, lsb extend, returns a function that extends a bit vector to length

k by repeating the least signi�cant bit of the bit vector at its least signi�cant end.

lsb_extend(k: above(N)): [bvec[N] -> bvec[k]] =

(LAMBDA bv: IF bv^0 = 0 THEN bv o bvec0[k-N]

ELSE bv o bvec1[k-N] ENDIF)

The lemmas about the extend functions are proved in the theory bv_extend_lems.

10 Theorems Involving Concatenation and Extrac-

tion

The following properties of ^ and o are proved in the theory bv_manipulations:

bvn: VAR bvec[n]

bvm: VAR bvec[m]

caret_concat_bot : THEOREM i < m IMPLIES (bvn o bvm)^(i,j) = bvm^(i,j))

caret_concat_top : THEOREM i >= m AND j >= m IMPLIES

(bvn o bvm)^(i,j) = bvn^(i-m, j-m))

caret_concat_all : THEOREM i >= m AND j < m IMPLIES

(bvn o bvm)^(i,j) = bvn^(i-m,0) o bvm^(m-1,j))

bv_decomposition : THEOREM bvn^(n-1,k+1) o bvn^(k,0) = bvn

concat_bottom : THEOREM (bvn o bvm)^((m-1), 0) = bvm

concat_top : THEOREM (bvn o bvm)^((n+m-1), m) = bvn

10

The �rst two theorems simplify formulas involving concatenation and extraction when the

part to be extracted is completely within one of the parts being joined together. The formula

caret concat allmoves an extraction within the concatenation. The last two theorems are

similar to the �rst two, except that the extraction involves the complete parts.

11 2's Complement Interpretations of a Bitvector

The 2's complement interpretation of a bitvector of length N enables the representation of

integers from �2N�1 to 2N�1 � 1. The basic de�nitions for 2's complement arithmetic are

de�ned in the bv_int theory.

Two constants are de�ned to represent the minimum and maximum values:

minint: int = -exp2(N-1)

maxint: int = exp2(N-1) - 1

The range of values is de�ned as follows:

in_rng_2s_comp(i: int): bool = (minint <= i AND i <= maxint)

rng_2s_comp: TYPE = i: int | minint <= i AND i <= maxint

The 2's complement interpretation function, bv2int, is de�ned as follows:

bv2int(bv: bvec): rng_2s_comp = IF bv2nat(bv) < exp2(N-1) THEN bv2nat(bv)

ELSE bv2nat(bv) - exp2(N) ENDIF

The bv2int function can also be expressed as follows:

bv2int_lem : THEOREM bv2int(bv) = bv2nat(bv) - exp2(N) * bv(N - 1)

The bv2int function is bijective (i.e. is a one-to-one correspondence):

bv2int_bij : THEOREM bijective?(bv2int)

and thus an inverse function int2bv exists:

int2bv(val:below(exp2(N))): bvec = inverse(bv2int)(val)

The following relationship exists between these functions:

bv2int_inv : THEOREM bv2int(int2bv(iv))=iv;

The int2bv functions can also be translated into nat2bv as follows:

ii: VAR rng_2s_comp

int2bv_2nat: LEMMA int2bv(ii) = IF ii >= 0 THEN nat2bv[N](ii)

ELSE nat2bv[N](ii+exp2(N)) ENDIF

11

12 Bitvector Arithmetic

An important advantage of 2's complement arithmetic is that the + operation for the natural

number interpretation and the 2's complement interpretation is the same. Thus, the same

hardware can be used for both cases. This property and others is developed in the following

subsections.

12.1 De�nition of Arithmetic Operators

Operations are de�ned to increment and decrement a bitvector by an integer in the theory

bv_arith_nat. This operations are overloaded on the + and - symbols:

+(bv: bvec, i: int): bvec = nat2bv(mod(bv2nat(bv) + i, exp2(N))) ;

-(bv: bvec,i: int): bvec = bv + (-i) ;

The addition of two bit vectors is de�ned as follows:

+(bv1: bvec, bv2: bvec): bvec =

IF bv2nat(bv1) + bv2nat(bv2) < exp2(N)

THEN nat2bv(bv2nat(bv1) + bv2nat(bv2))

ELSE nat2bv(bv2nat(bv1) + bv2nat(bv2) - exp2(N))

ENDIF ;

This de�nition leads immediately to the following theorems:

bv_add : LEMMA bv2nat(bv1 + bv2) =

IF bv2nat(bv1) + bv2nat(bv2) < exp2(N)

THEN bv2nat(bv1) + bv2nat(bv2)

ELSE bv2nat(bv1) + bv2nat(bv2) - exp2(N) ENDIF

bv_addcomm : THEOREM bv1 + bv2 = bv2 + bv1

The �rst lemma provides the natural number interpretation for the + operation. The next

theorem shows that it is commutative. Other useful lemmas about bitvector addition are

also provided:

k,k1,k2: VAR int

bv_add_two_consts: THEOREM (bv1 + k1) + (bv2 + k2) = (bv1 + bv2) + (k1 + k2)

bv_add_const_assoc: THEOREM bv1 + (bv2 + k) = (bv1 + bv2) + k

bv_add_2_consts: LEMMA (bv + k1) + k2 = bv + (k1+k2)

bv_both_sides: THEOREM (bv1 + bv3 = bv2 + bv3) IFF bv1 = bv2

bv_add_assoc: THEOREM bv1 + (bv2 + bv3) = (bv1 + bv2) + bv3

12

The * is overloaded to represent the unsigned multiplication of two n-bit bvecs:

*(bv1: bvec[N], bv2: bvec[N]): bvec[2*N]

= nat2bv[2*N](bv2nat(bv1) * bv2nat(bv2)) ;

This de�nition leads immediately to the following theorem, which provides the natural num-

ber interpretation for the * operation:

bv_mult : LEMMA bv2nat(bv1 * bv2) = bv2nat(bv1) * bv2nat(bv2)

The carryout function is de�ned as follows:

carryout(bv1: bvec, bv2: bvec, Cin: bvec[1]): bvec[1] =

(LAMBDA (bb: below(1)):

bool2bit(bv2nat(bv1) + bv2nat(bv2) + bv2nat(Cin) >= exp2(N))) ;

The carryout function indicates when the + operation will exceed the capacity of the bitvec-

tor. Note that the carryout returns a bvec[1].

The inequalities over bitvectors are de�ned as follows:

< (bv1: bvec, bv2: bvec): bool = bv2nat(bv1) < bv2nat(bv2) ;

<=(bv1: bvec, bv2: bvec): bool = bv2nat(bv1) <= bv2nat(bv2) ;

> (bv1: bvec, bv2: bvec): bool = bv2nat(bv1) > bv2nat(bv2) ;

>=(bv1: bvec, bv2: bvec): bool = bv2nat(bv1) >= bv2nat(bv2) ;

The following lemmas about the bitvector order relations are provided:

bv_smallest : LEMMA (FORALL bv: bv >= bvec0)

bv_greatest : LEMMA (FORALL bv: bv <= bvec1)

12.2 Arithmetic Properties of Shifting

The following theorems (available in bv_arith_extract) give the numerical properties of

left and right shifting:

ss: VAR below(N)

bv: VAR bvec[N]

bv_shift : THEOREM bv2nat(bv^(N-1,ss)) = div(bv2nat(bv), exp2(ss))

bv_bottom : THEOREM bv2nat(bv^(ss,0)) = mod(bv2nat(bv),exp2(ss+1))

right_shift_lem: THEOREM bv2nat(right_shift(ss,bv)) = div(bv2nat(bv),exp2(ss))

left_shift_lem : THEOREM bv2nat(left_shift(ss,bv)) =

bv2nat(bv^(N-ss-1,0))*exp2(ss)

13

The bv shift theorem establishes that the extraction of the upper bits is equivalent to

dividing by a power of 2 under the natural number interpretation2. This theorem is closely

related to the right shift lem. The bv bottom theorem establishes that the extraction

of the lower bits is equivalent to a power of 2 mod operation under the natural number

interpretation.

The arithmetic right shift operator is de�ned in bv_arith_shift as follows:

arith_shift_right(k: upto(N), bv: bvec[N]): bvec[N]

= right_shift_with(k,fill[k](bv^(N-1)),bv)

Note that it �lls the upper k bits with the (N-1)st bit of the original bitvector. The following

theorem shows the 2's complement result of an arithmetic right shift:

k: VAR upto(N)

arith_shift_right_int: LEMMA bv2int(arith_shift_right(k,bv)) =

floor(bv2int(bv)/exp2(k))

12.3 Theorems about 2's Complement Arithmetic

The 2's complement negation of a bit vector is de�ned in bv_arithmetic as follows:

-(bv: bvec): bvec = int2bv(IF bv2int(bv) = minint THEN bv2int(bv)

ELSE -(bv2int(bv)) ENDIF) ;

The following property relates this operator to bv2int:

unaryminus : LEMMA bv2int(-bv) = IF bv2int(bv) = minint THEN bv2int(bv)

ELSE -(bv2int(bv)) ENDIF

The subtraction of two bit vectors is de�ned (in bv_arithmetic) using bitvector addition

as follows:

-(bv1, bv2): bvec = (bv1 + (-bv2))

If the result is in the range of 2s complement integers, addition of two bit vectors is the same

as for a natural number interpretation:

intaddlem : THEOREM in_rng_2s_comp(bv2int(bv1) + bv2int(bv2))

IMPLIES bv2int(bv1 + bv2) = bv2int(bv1) + bv2int(bv2)

This is the relationship that enables one to use the same hardware for natural number addition

as 2's complement addition.

The 2s complement of a bitvector is its 1's complement + 1:

twos_compl : THEOREM -bv2int(bv) = bv2int(NOT bv) + 1;

The 1's complement of a bitvector bv is the bitwise NOT, i.e. NOT bv.

2The div function over natural numbers is de�ned by div(n,m): nat = floor(n/m)

14

13 Overow

Arithmetic overow occurs when the result of an operation cannot be represented within the

bitvector. The conditions for 2's complement overow are de�ne in the bv_overflow theory:

overflow(bv1,bv2,b): bool = (bv2int(bv1) + bv2int(bv2) + b) > maxint[N]

OR (bv2int(bv1) + bv2int(bv2) + b) < minint[N]

The following theorem provides the relationships between the top bits of the operands and

the result when overow occurs.

overflow_def : THEOREM overflow(bv1, bv2, b) =

((bv1 ^ (N - 1) = bv2 ^ (N - 1))

AND (bv1 ^ (N - 1) /= (bv1 + bv2 + b) ^ (N - 1)))

The following theorems de�ne the result of bitvector arithmetic when overow occurs:

not_in_rng : THEOREM NOT in_rng_2s_comp(bv2int(bv1) + bv2int(bv2))

IMPLIES bv2int(bv1 + bv2) =

bv2nat(bv1) + bv2nat(bv2) - exp2(N)

not_in_rng_int: THEOREM NOT in_rng_2s_comp(bv2int(bv1) + bv2int(bv2))

IMPLIES bv2int(bv1 + bv2) =

bv2int(bv1) + bv2int(bv2) + exp2(N) * bv1(N - 1)

+ exp2(N) * bv2(N - 1)

- exp2(N)

14 Library Organization

The top of the bitvectors library is located in the theory bv_top. It imports the following

theories:

15

bv provides basic de�nition of bitvector type bvec

bv_nat interpretes bvec as a natural number

bv_int interpretes bvec as an integer

bv_arithmetic de�nes basic operators (i.e. + - >) over bitvectors

bv_arith_nat de�nes bitvector plus, etc

bv_arith_extract de�nes arithmetic over extractors

bv_extractors de�nes extractor operator ^ that

bv_extractors_lems provides lemmas about ^ operator

bv_concat de�nes concatenation operator o creates smaller bitvectors from larger

bv_concat_lems establishes that concat is a monoid

bv_constants de�nes some useful bitvector constants

bv_manipulations provides lemmas concerning ^ and o

bv_bitwise de�nes bit-wise logical operations on bitvectors

bv_bitwise_lems provides lemmas about bit-wise logical operations

bv_shift de�nes shift operations

bv_extend provides zero and sign extend operations

bv_extend_lems provide lemmas about extend operations

bv_fract de�nes fractional interpretation of a bitvector

bv_overflow relates overow to top bits

A graphical display of the import chain is shown in �gure 1.

References

[1] Owre, S.; Shankar, N.; and Rushby, J. M.: The PVS Speci�cation Language (Beta

Release). Computer Science Laboratory, SRI International, Menlo Park, CA, Feb. 1993.

[2] Owre, S.; Shankar, N.; and Rushby, J. M.: User Guide for the PVS Speci�cation and

Veri�cation System (Beta Release). Computer Science Laboratory, SRI International,

Menlo Park, CA, Feb. 1993.

[3] Shankar, N.; Owre, S.; and Rushby, J. M.: The PVS Proof Checker: A Reference Manual

(Beta Release). Computer Science Laboratory, SRI International, Menlo Park, CA, Feb.

1993.

[4] Owre, Sam; Rushby, John; ; Shankar, Natarajan; and von Henke, Friedrich: Formal

Veri�cation for Fault-Tolerant Architectures: Prolegomena to the Design of PVS. IEEE

Transactions on Software Engineering, vol. 21, no. 2, Feb. 1995, pp. 107{125.

[5] Shankar, Natarajan; Owre, Sam; and Rushby, John: PVS Tutorial. Computer Science

Laboratory, SRI International, Menlo Park, CA, Feb. 1993. Also appears in Tutorial

Notes, Formal Methods Europe '93: Industrial-Strength Formal Methods, pages 357{406,

Odense, Denmark, April 1993.

[6] Butler, Ricky W.: An Elementary Tutorial on Formal Speci�cation and Veri�cation

Using PVS. NASA Technical Memorandum 108991, Sept. 1993.

16

bv_bitwise bv_nat bv_concat

bv

bv_int bv_concat_lems

bv_extendbv_shift

bv_fractbv_extractors

bv_manipulations

bv_rotate

bv_arith_nat

bv_arith_extract

bv_arith_shift

bv_extractors_lems

bv_arithmetic

bv_overflowbv_bitwise_lems bv_extend_lems

Figure 1: Importing Structure of Bitvectors Library

[7] Hunt, Jr., Warren A.: FM8501: A Veri�ed Microprocessor. University of Texas at

Austin, Technical report, 1985. Technical Report ICSCA-CMP-47.

[8] Wong, W.: Modeling Bit Vectors in HOL: the word Library. In Higher Order Logic The-

orem Proving and its Applications: 6th International Workshop (HUG'93), Vancouver,

B.C., vol. 780 of Lecture Notes in Computer Science, pp. 371{381. Springer Verlag, 1994.

17

